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1. Introduction 

This is the first of two papers dealing with the electronic band structures of some 
transition-metal phosphides. In the present paper we develop an improved 
L C A O  tight-binding method and apply it to the case of scandium phosphide 
and in the second paper we will examine other transition-metal monophosphides. 

Previous work [1, 2, 3] has shown that a simple LCAO approach to electronic 
band-structure calculation can yield satisfyingly consistent results for the elec- 
tronic structures of metal borides. The approach is here extended to a consider- 
ation of some bindary phosphides. 

The phosphides of transition-metal elements exhibit considerable variation in 
crystal structure and stoichiometry. They also show interesting electrical and 
magnetic properties. Although certain qualitative explanations [4, 5] have been 
given for their properties, before we started the present work no band-structure 
calculations of these compounds had been carried out. However,  during the 
course of the work a report  on a calculation of the band structure of scandium 
phosphide became available [6]. In the present work we have studied certain of 
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the monophosphides of the 3d transition elements, the choice being based on 
the simplicity of their crystal structures and on the availability of data appertaining 
to their properties. Thus, of the 3d monophosphides, ScP is reported to be a 
semiconductor with a band gap of 1.1 eV [7] whilst the others in the series are 
metal-like, with electrical conductivities comparable with those of some metals 
[8]. Of these materials only MnP has been shown to be magnetic below 292 K, 
while all other members of the series are non-magnetic and only possess weak 
Pauli paramagnetism [5]. An attempt is made here and in the second paper to 
rationalise these observations. 

2. Calculational Method 

2.1. Band Structure and Density o[ States 

The method used for band-structure calculations was based on an Extended- 
Hiickel formulation previously described [1]. Considerable progress in the 
implementation of this method has, however, been made and some description 
is therefore given here. Input atomic data (orbital exponents and valence-state 
ionization potentials for the basis functions) are given in Table 1 for scandium 
and phosphorus. The data for the latter element have been employed in many 
previous molecular calculations [9, 10]. 

For ScP there is one molecule per unit cell, whilst in VP there are two and in 
MnP and CrP there are four. In the latter cases, the number of valence orbitals 
amounts to 72 if the empty phosphorus 3d orbitals are included. This size of 
basis set is unmanageable and, hence, we were constrained to omit the phosphorus 
3d orbitals in all cases. This will be commented on in a later context. In all cases 
the Mulliken-Wolfsberg-Helmholtz scaling factor for the off-diagonal matrix 
elements between atomic orbitals was set at 2.0. 

When such large basis sets are used in a calculation, there ensues the problem 
of correctly connecting up the points in k-space given by the calculation and 
correctly identifying crossing points. This is an impossible task by hand, par- 
ticularly in the region of the Fermi level where the states are closely aggregated. 
Hence, the plotting of bands along the symmetry directions was carried out by 
an automatic procedure. The background to this procedure is as follows. 

Table 1. Input data for the atoms 

Exponents VSIP 
4s 4p 3d 4s 4p 3d 

Scb 0.975 0.65 2.067 5.70 3.22 4.71 
pa (3s) 1.75 (3p) 1.30 0.667 (3s) 19.37 (3p) 10.84 1.45 

a Ref. [20]. 
b Calculated from atomic spectra in the usual way [20]. 
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The orbitals of a crystal form an orthonormal set as, 

(4J,(k)l~i(k')) = &j&k'. (1) 

However, if the wave vectors k and k' are separated by a small distance 8k in 
the reciprocal space, one can use perturbation theory to calculate the integral 
S~j as: 

s ' ,  = <4,,(k)l&l~0j(k')> 

= (~,(k)l~j(k)). (2) 

The value of S'~jwill be largest for the wavefunctions ~ (k )  and ~0j(k'), if they 
both correspond to eigenvalues originating in the same band. 

We have, 

~O,(k) = E Cx,(k)~ k (3) 
h 

r = E G j ( k ' ) ~ ' .  (4) 
2, 

If k and k' are very close to each other in the Brillouin Zone, then, 

Slj = E c *~(k)c~j(k') 

= ~ (Rc~,(k)- iIc~,(u) )(R c~,(k') + iI~,(k,) ) (5) 
;t  

where Rc~, and Ic~, are the real and imaginary parts of the coefficients cx~(k), 

S~j = Rc + i1~. (6) 

One can calculate the modulus of this complex number as, 

Isljl-- ~ .  (7) 

[S'iil can be related to the overlap between the two state functions ~Oi(k) and 
~bi(k') of a crystal. Hence, one can connect the pairs of eigenvalues to form a 
band for two near neigbouring k-points if S !-, between the corresponding crystal 
orbitals is a maximum. This criterion establishes the correct compatibility relation 
between the eigenvalues of the crystal. 

A complete description of the band structure requires the knowledge of the 
symmetry properties of the bands at special points and along the lines of symmetry 
in the Brillouin zone. Therefore, it is necessary to calculate the expectation 
values of the compound symmetry operators {/~ 1o3~ +/~n} (i.e. (~b/(k)*l{/~ Io3~ + 
/~,}[~b~ (k))) belonging to G k, the little group of the wave vector at these symmetry 
points and along the lines of symmetry in the Brillouin zone. 

This procedure is followed through automatically in the program and, hence, a 
complete definition of the symmetry of the bands is afforded. 
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2.2. The Density-of-States Function 

The density-of-states and related functions were obtained using linear interpola- 
tion techniques. Our method is somewhat different from those previously used 
and hence a description is given here. 

The density-of-states function gi(E), defined as the number of available states 
per unit volume per unit energy interval for band/', is given by, 

2 3 g~(E) = ~ I ~{~j(k)-E} dk (8) 

in the form, 

2 1 N~ 
=---- ~ Aj(ki) (9) 

g1 No AE i=1 

where Aj(k~) is unity if ej(k~) is within an interval AE about E, zero otherwise, 
and kg are the sampling points in the first Brillouin Zone of the system. The 
total density of states arising from all the bands of the system is then, 

G(E)=  E ~j(E). (10) 
all bands 

The standard numerical technique for the evaluation of Eq. (9) is to obtain the 
eigenvalues associated with a commensurate mesh of k-points lying in the 
representation domain qb of the Brillouin Zone and then to generate a fine mesh 
of k-points and the associated eigenvalues using linear interpolation techniques. 
Finally, the density-of-states function for the flh band is calculated as: 

2 1 NA 
= - -  E (-~ (ii) 

gj(E) No A E  i=1 

where 0.) i is the star of the wave vector kl and Np is the normalising constant 
given by: 

N A 
Np = Yl. oJ~. (12) 

i = 1  

In our method, in place of the representation domain qb of the Brillouin Zone, 
a cubic fraction of the zone volume is employed such that the resulting k-points 
have the star of unity, thereby improving the sampling quality of the interpolated 
k-points and the associated eigenvalues. Therefore, as the first step towards 
calculating G(E), we define the representative domain OR as the volume in 
reciprocal space such that Y~/~t~qbR is equal to an integral multiple of the first 
Brillouin Zone volume and, furthermore, the volume produced above can be 
divided into an integral number of cubes. The sum over/~o extends over the 
elements of the holosymmetric point group P of the lattice. We shall refer to 
this reciprocal space volume hereafter as the NBZ volume. Fig. 1 shows the 
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Fig. 1. Representative domain qb R for 
cubic lattices 
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- Representative domain OR 

Fig. 2. Representative domain OR for 
the hexagonal lattice 
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representative domain qbR for cubic lattices and the final N BZ volume divided 
into eight equivalent cubes, while Fig. 2 gives the representative domain dPR for 
hexagonal into three equivalent cubes. 

We calculate an approximate G(U) in crystals by obtaining the eigenvalues 
associated with a commensurate mesh of k-points in the representative domain 
dOR of the system. The symmetry operations of the point group P of the lattice 
are then used to produce the equivalent wave vectors and the associated eigen- 
values in the NBZ volume. From this NBZ volume, we select one of the integral 
cubic fractions. This cube is like a finite simple cubic lattice, where each k-point 
is a unit cell of this finite lattice. We use three unit cells to generate new wave 
vectors and associated eigenvalues required for calculation of G(E).  Thus, let 
Ei(O, O, 0), Ei(O, O, 1) . . . . . .  Ei(1, 1, 1) be the supplied energy of the ]th band at 
positions (0, 0, 0), (0, 0, 1) . . . . .  (1, 1, 1) of one of new cubes described above. 
Then the energy Ei(kx,,kyAk~ A) at the generated k-point kxAkyAkz a is given by 

Ei(kxA, kyA, kzA) = E ( X X ' )  + ns[E( YX ' )  - E ( X X ' ) ] S  (13) 

where ns varies from 1 to NS, NS  being the number of steps used for interpolation 
in each direction of the cube and S is the step size. 

The energies E j ( X X )  and E j ( Y X )  are generated in terms of E j (0 ,0 ,0 ) ,  
Ei(O, O, 1) . . . .  Ei(1, 1, 1) as: 

E i (XX')  = E i (XX)  - �89 ( X Y )  - Ej (XX)]S + ns [E i ( X Y )  - E i (XX)]S  

Ei (YX') = E i ( Y X )  - �89 E i ( Y Y )  - Ej ( Y X )  ]S + ns (E i ( Y Y )  - E i Y X )  ]S 
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where Ei(XX),  E (YX) ,  and Ei(YY) are given by, 

Ei(XX) = E;(000) -~[Ej(001)  - E/(000)]S + ns[Ej(O01) - Ei(000)]8 

Ei(XY) = Ei (010) - lIE/(011) - Ej(010)]8 + ns[Ei(O11) - E/(010)]8 

E;(YX) = Ej(100) - ][Ej (101) - E i ( l O 0 ) ] 8  + ns[Ej(101) -E/(100)]8 

Ei(YY) = E~.(110) - ~[Ei (111) - Ei(110)]8 + ns[Ei(111) -Ei(110)]8. 

Fig. 3 shows such an interpolation scheme carried out for generating three 
points in each direction of the cube. The generated points are marked X. As 
shown in Fig. 3, all generated points avoid any special symmetry positions, thus 
improving the sampling quality. This is done for all the unit cells of the cube 
obtained from the NBZ volume. Thus, an approximate form of ~/(E) can be 
obtained from Eq. (14) and is written as, 

1 1 Np 
=-- E At(k,) (14) gj(E) Np a E  ,=~ 

where summation of i runs over the points generated in the cubic fraction of 
NB Z volume. The periodic properties of the reciprocal space ensure the correct 
behaviour of ~i(E) after normalisation. 

Finally, the total density of states is calculated using Eq. (11). 

2.3. The Joint-Density-of-States Function 

The density-of-states function G(U) furnishes information on the location of 
electronic states in crystals. It can further be used to obtain a qualitative picture 
of electronic transitions in crystals. 

,, - ,  \ 

. . . . .  ,, ', 

, "\~ ", ~ 
Fig. 3. Supplied (.) and generated (• 
k-points from the interpolation scheme 



Transition-metal Monophosphides 561 

The imaginary part of the complex dielectric function e2(~o), related to the 
electronic transitions in crystals, is given by Eq. (15), 

1 [ -E~ -hoJ) 
ez(oJ) = 2e~h2 Y. ~ 3  j fco(k)~(EcEc~(k) (15) 

m c,~ 

where c and v are labels for conduction and valence bands, respectively, Ec~ = 
Er (k ) -  E~ (k) and fc~ (k) is the interband oscillator strength which characterises 
the transition probability between 0c(k) and 0v(k). The complete evaluation of 
e2(w) is complicated by the presence of fc~(k), the oscillator strength, in the 
equation. However, we can approximate the joint-density-of-states function, 
JDOS(E), representing the available interband transitions, in exactly the same 
way as the density of states G(E), thus, 

1 1 
= - -  E A[{Ec(k,)-E~(k,)}-E]. (16) JDOS(E) AE Np i=1 

Furthermore, as required, we can remove the restriction of k-conservation and 
can calculate a joint-density-of-states function (J'DOS(E)) using the density-of- 
states function G(E) thus, 

J'DOS(E) = E G(E~) x G(E~). A((E~ - E ~ ) - E )  (17) 
C,~ 

where O(Ec), G(Eo) are the total density of states at energy Ec and E~, respec- 
tively, in the conduction and the valence bands lying either side of the Fermi level. 

The functions JDOS(E) and J'DOS(E) can deviate somewhat from e2(o~); 
nevertheless, from them one can obtain a semi-quantitative picture of the possible 
electronic transitions in the solid. 

3. Results and Discussion 

As aforestated in this paper, we consider here only the case of ScP, the only 
reported semi-conductor in the series. 

3.1. Band Structure for ScP 

The primitive unit cell of ScP consists of an Sc atom at (0, 0, 0) and a P atom 
at (0, 0, a/2), and interactions between 135 unit cells of the lattice (second nearest 
neighbours) were taken into account in the calculations. The lattice constant is 
0.5312nm [11] and the space group 05. The first Brillouin Zone for the 
face-centred cubic lattice is shown in Fig. 4, with standard notation for the 
high-symmetry points. 

Fig. 5 shows the band structure around the Fermi level along the lines 
F - X -  W -  L -  F - K  - X .  We note that there is a similarity between the band 
structure of ScP and those ScC and ScN [12] and TiO, TiN [13]. Near I', the 
valence-band states arise principally from the 3s and 3p orbitals of phosphorus, 
but, as the wave vector k increases from F, the metal orbitals also contribute 
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Fig. 4. Brillouin zone for face-centred-cubic  lattice 
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significantly to these valence bands. Table 2 shows the composition of the valence 
bands at the special symmetry points in the Brillouin Zone. In our calculation 
the eight valence electrons per unit cell completely fill the valence band, after 
which there is a band gap of 0.80 eV between the highest filled valence band 
and the lowest-lying conduction band. The latter occurs along the symmetry line 
F - K  in the Brillouin Zone. The conduction band consists mainly of states 
arising from the metal 4s, 4p, and 3d orbitals. Actually, the bands which stem 
from the metal 4s and 4p orbitals lie higher in energy whilst, at the bottom of 
the conduction band, the bands arising from the metal 3d orbitals spread over 
an energy range of about 4.0 eV. The narrowness of the individual metal 3d 
bands in the lower conduction region implies large effective electron masses. 

Our calculation does not include the 3d orbitals of phosphorus. We did, however, 
investigate their influence by means of a periodic cluster approach [14, 15]. This 
yielded the eigenvalues corresponding to the band structure at F and X. The 
input data representing the phosphorus 3d orbitals are given in Table 1. Briefly, 
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Table 2. Composition of the valence band in ScP at special symmetry points 

563 

Energy (eV) Symmetry Composition 

-23.35 I" t 100% 3s (P) 
-6.55 I"15 100% 3p (P) 

-17.98 321 95% 3s (P), 5% 3d (Sc) 
-14.92 X~ 96% 3p (P), 4% 4p (Sc) 

-8.46 X~ 100% 3p (P) 
-19.65 L~ 94% 3s (P), 6% 4p (Sc) 
-15.91 L1 93% 3p (P), 6% 4s (Sc) 

-7.31 L3 42.5% 3p (P), 57.4% 3d (Sc) 
-17.85 W~ 96% 3s (P), 4% 3d (Sc) 
-12.78 W3 98% 3p (P), 2% 3d (Sc) 

-9.75 W1 86% 3p (P), 12% 3d (Sc) 

the results of this treatment are: the phosphorus 3d orbitals enter the band 
scheme in the low conduction band area and decrease the band-gap at F by 
-0 .1  eV. (We cannot judge its effect between F and K from a "small cluster" 
calculation [14].) Hence, the d orbitals of phosphorus do not remove the band 
gap for ScP. 

Recent calculations of the band structure of ScP by the APW method with 
exchange-correlation predict the material to be a metallic conductor [6]. The 
occurrence of an optical band gap [7] is put down by these authors as stemming 
from transitions from P(3p) to Sc(3d) orbitals. The true nature of this material, 
therefore, is somewhat puzzling since, on the one hand, the above APW method 
has previouly afforded accurate, physically sensible, and consistent results on a 
variety of similar binary materials [12, 13, 16] and, moreover, the experimental 
observation on ScP was an optical rather than a thermal band-gap determined 
by conductivity changes. (Actually, a thermal band-gap could not be measured 
for the prepared materials because of donor impurities, vide infra.) 

On the other hand, the work in Ref. [7] reports not only the band gap for ScP 
but also a sharp optical band gap for the closely related compound ScAs. 
Moreover, independently, Sclar [17] also suggested a value of 1.45 eV for ScP. 
Optical band-gap measurement is a well-established technique and may be in 
some ways more reliable than conductivity studies. Furthermore, the band-gap 
evidence does not stand by itself; measurements of the Hall effect lead to values 
of the Hall mobility of 10-30 cm 2 V -1 sec -1 [7] with a carrier concentration of 
2 x 1021 cm -3. 

The samples of ScP and ScAs prepared and examined by Yim et al. were highly 
n-type, with a carrier concentration in the region of 1021 cm -3. Moreover, they 
detected no metal impurities or phosphorus but rather large concentrations of 
chlorine (102-104 at p.p.m.) It seems very likely that the n character of the 
materials stem from these chlorine impurities having donor levels lying just 
below the conduction band edge. 
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The sign and magnitude of the Hall constants, the magnitude of the hall mobility 
for the carriers, and the measured electrical conductivity for ScAs [7] are all 
completely consistent with the above interpretation. The Seebeck coefficient is 
also large and negative [7] and indicates the carriers to be electrons as in a 
low-band-gap semiconductor. 

The electrical conductivity of ScAs is of the same order  as that of graphite [18] 
which, in the region of the Fermi level, also has a small gap. The conductivity 
of ScAs is about  three orders of magnitude too low for a metallic conductor. 
Hence,  the only possibility to explain metallic behaviour is that the material is 
further impure in some undetected way. Since impurities in materials generally 
induce higher conductance than the pure material because of n and p impurity 
levels, then it is difficult to see how a material which is really a metallic conductor 
can be turned into a semiconductor through impurities. 
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Fig. 6. Total density of states for ScP. The lower figure extends the scale in the band-gap region 
(I) is the integral of the density of states. The abscissa gives the number of electrons 
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3.2. The Density-of-States and Related Functions in ScP 

The electronic density-of-states function obtained by linear interpolation of 230 
k-points in the representative domain DR is shown in Fig. 6. The valence band 
has a gap of about 2 eV separating the states arising from 3s and 3p orbitals of 
phosphorus. Above the band gap, the bands arising from the 3d orbitals of 
scandium are seen. The effect of the crystal potential, essentially octahedral, on 
these 3d orbitals is well demonstrated in the band structure and the mixing and 
spreading of the atomic states arising from the orbitals of t2g and eg types give 
rise to peaks in the density of states having area ratio 3 �9 2. These figures show 
that the absorption spectrum should show little change on disordering of the 
lattice in any way. The "t2g band" peaks near -4.6 eV and the "eg band" near 
-4.25 eV. 

Finally, Figs. 7 and 8 show the joint-density-of-states functions J'DOS(E) and 
JDOS(E) calculated as previously described. Both of these show the fundamental 
absorption edge at about 0.80 eV and the other possible transitions in ScP. 
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3.3. Bonding and Charge Distribution in ScP 

The computed partial densities of states for the basis orbitals of the unit cell are 
shown in Figs. 9 and 10. They afford a qualitative description of the bonding in 
crystalline ScP. The 4s orbitals on Sc, which are filled in the free atom, lie mainly 
in the conduction band and this results in the loss of 1.86 electrons from the 
metal. However, the 4p orbitals, which are formally empty, take part in the 
crystal bonding and gain ~0.37 electrons. The metal 3d orbitals (with one 
electron in the free atom) also increase their share of available electrons in the 
crystal by lowering their energy and gain -0 .44  electrons. The orbitals of 
phosphorus, though mainly of bonding type, also have some antibonding charac- 
ter and partially lie in the conduction band. Overall, the metal-ligand bonding 
in the crystal results in a charge separation of Sc § p-1.14; this is to be compared 
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_ _ J ,  . 
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-29 --19 
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-9 1 Fig. 9. Partial densities of states for Sc 
orbitals in ScP 
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Fig. 10. Partial densities of states for P orbitals 
in ScP 

with the formal oxidation states leading to Sc3+p 3-  and so considerable covalent 
character is found. The bond index [19] for the ScP bond is 0.29 and for the 
nearest Sc-Sc it is 0.02. Since for a purely ionic bond the bond index must be 
zero [19], then a considerable degree of covalency is evident in the ScP bond. 
This covalency is partially responsible for the semi-conducting nature of the 
crystal; a "purely ionic" crystal would inevitably possess a far higher band 
gap but covalent mixing of the metal-ligand orbitals in the crystal reduces the 
band gap. 
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